A 170m-long record of marine sediment core from Antarctica is yielding new insights into the complex relationship between sea ice, the productivity of marine plankton, and climate change.
In a study published in Nature Geoscience, a team led by researchers at GNS Science, Te Herenga Waka–Victoria University of Wellington, and the University of Otago have collaborated with international scientists to show that Antarctic sea ice has had a tight connection to both Southern Ocean algae blooms and El Niño-linked weather events over the past 12,000 years.
Funded partly by the Royal Society Marsden Fund, the team found Antarctic winds strongly affect the breakout and melting of sea ice, which in turn has an effect on the amount of microscopic algae that grow in surface waters.
Changes in algae growth in the waters surrounding Antarctica can have an impact on Antarctic food webs, and they also play a major role in the global carbon cycle. Check out the full media release here