Linda Balfoort takes a sample from the core. Photo: Sally Knox/Otago University
Sediment cores retrieved from Antarctica’s Siple Coast last summer were carefully opened and examined at a recent workshop at the Otago Repository for Core Analysis (ORCA), an important step in the hunt for clues about the past behaviour of the West Antarctic Ice Sheet.
Hoisted up through 55 m of ocean cavity, 580 m of ice, travelling by air 860 km to Scott Base then 4000 km to Christchurch (New Zealand), and finishing with a 350 km car ride to Otago University’s ORCA facility in Dunedin, the 10 sediment cores obtained by the SWAIS2C (Sensitivity of the Western Antarctic Ice Sheet to Two Degrees Celsius of Warming) project in December 2023 have had quite the journey.
Linda Balfoort, Tina van de Flierdt and Denise Kulhanek with a core retrieved on the Siple Coast in 2023/24. Photo: Anthony Powell
This was precious cargo - with only a handful of cores previously collected from under the Ross Ice Shelf, an area the size of France, these new cores are an extremely rare geological record.
“These samples offer a huge increase in the amount of material we have to help us understand the present-day environment beneath the ice shelf, and the history those sediments represent,” says SWAIS2C Co-chief scientist Richard Levy, from GNS Science and Te Herenga Waka – Victoria University of Wellington, who is Co-PI for the Antarctic Science Platform's Project 1.
This initial workshop was focused on using largely non-destructive analysis techniques to learn more about the cores, so that the wider research team can plan their research and put in sampling requests.
Linda Balfoort and Richard Levy examine the split core. Photo: Jenny Black/GNS Science
To begin unlocking the sediment’s secrets, the cores were X-rayed and CT-scanned. They then had to be split in half longitudinally, a painstaking process that initially uses a small circular saw to score the sides, and then requires manual splitting with a thin wire.
“Antarctic sediment often has large clasts in it. If you pull the wire through too quickly, or cut through with the saw, there’s a risk of dragging a rock with you all the way through the core and ruining it,” says Linda Balfoort, SWAIS2C sedimentologist and PhD student with Te Herenga Waka – Victoria University of Wellington and GNS Science.
Following successful splitting, visual description began. The team looked for changes in sediment colour and grain size, and calcareous materials and signs of fossilised marine algae, creating a visual core log. They also took smear slides – tiny samples of sediment placed on microscope slides, and some bigger samples to use for dating analysis.
“Antarctic sediments are notoriously hard to date. We’re particularly looking out for fossilised foraminifera (single-cell organisms with a calcium carbonate shell), as they’re very useful for pinpointing dates and revealing information about ocean chemistry,” says Balfoort.
The split cores were scanned to a high resolution, and a range of other non-destructive measurement techniques were used such as XRF to identify the chemical elements present.
“Any new record from this area is incredibly important and valuable, so I felt very privileged to be among the first people to see these sediments. But to me the most exciting thing will be to get the data, analyse the smear slides, and find out what’s hiding inside the sediments,” says Balfoort.
The team chose to split and analyse three of the cores including the longest core ever retrieved from the Siple Coast - a 1.92 m core obtained through the physically demanding hammer coring technique.
The core is scored with a saw before manual splitting. Linda Balfoort/Victoria University of Wellington
SWAIS2C Co-chief scientist Tina van de Flierdt, from Imperial College London, says that without the dating results and further analysis it’s too soon to know conclusively how far back in time the sediment in this core reaches, but there are positive signs that it holds information about how the Ross Ice Shelf retreated in the past.
“We’re confident that what we are seeing is a glacial retreat sequence, when the grounding line – the point where the floating Ross Ice Shelf meets the Western Antarctic Ice Sheet that is grounded on bedrock – moved further inland. We’re not sure yet whether it’s the long retreat following the last glacial maximum, or a much more recent process within the past 200 years or so,” says van de Flierdt.
The team of drillers, engineers and researchers will be heading back to the Siple Coast site for the 2024/25 Antarctic field season, to drill up to 200 m below the seafloor to recover a geological record going even further back in time than these shorter cores, to provide key insights into West Antarctica’s potential contribution to future sea-level rise.
About the SWAIS2C project
Evidence from Earth’s past offers a glimpse into our future. In the last interglacial period, around 125,000 years ago, global temperatures were 1 to 1.5°C warmer than pre-industrial times, similar to what we will see if carbon emissions targets, outlined in the Paris Agreement of the United Nations Framework Convention on Climate Change, are met.
Sea level may have been 6-9 metres higher due to ice melt – but it’s not yet clear how much the Greenland and Antarctic ice sheets melted. The international SWAIS2C project aims to determine just how much the West Antarctic Ice Sheet melted during the last interglacial and other past times when climate was warmer than present.
The SWAIS2C team of drillers, engineers, and researchers will obtain geological records from two sites on the Ross Ice Shelf, to understand how the Ross Ice Shelf and West Antarctic Ice Sheet responded to climate warming in the past, and what this means for Earth’s future.
- More from GNS Science